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Abstract

This paper provides results for calculations performed using MCNP6’s unstructured mesh capabilities based

on the three problems described in the Kobayashi benchmark suite. These calculations are performed to

provide a comprehensive and consistent basis for the verification and validation of MCNP6’s constructive

solid geometry (CSG) and unstructured mesh (UM) neutron transport capabilities relative to a well-known

analytic benchmark. First, pre-existing MCNP5 CSG models are updated and re-executed to form a basis of

comparison with UM for both the consistency of the numeric results and speed of execution. Next, a series

of UM calculations are performed using first- and second-order tetra- and hexahedral elements with mesh

generated using Abaqus. In addition, a different first-order tetrahedral mesh is generated with Attila4MC

in order to investigate the effect on the results. When executed, results for both CSG and UM agree

amongst themselves and with the benchmark quantities within reasonable statistical fluctuations (at worst,

the results agree within 2σ or 10% but generally within 1σ or 5%) and recognizing from historical work

that improved agreement is possible with additional variance reduction effort. As expected, for the simple

geometries herein, we find the CSG calculations completing ∼10 times faster than the comparable fastest

UM calculations. We find minor speed differences (∼1%) between multigroup and continuous energy nuclear

data and significant speed differences (factor ∼100) between different element types. As such, the timing

results support the recommendation that users run with the simplest unstructured mesh element type that

adequately represents the problem geometry, ideally first-order hexahedra, and with the most convenient

nuclear data energy treatment.
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I. Introduction

This paper provides results for calculations performed using MCNP6’s unstructured mesh capabilities based

on the Kobayashi benchmark suite (Ref. 1). This benchmark suite was created primarily to evaluate the

accuracy of 3-D deterministic radiation transport codes using one-group fixed source problems capable of

being solved analytically. As such, it consists of three geometric configurations characterized by a uniform

volumetric isotropic source within a void region within a shield region where the source and shield are

composed of a purely-absorbing material or a material that is 50% absorbing and 50% isotropically scattering

(hereafter referred to as “50/50”). The benchmark flux solution in the pure absorber cases was calculated

directly using numeric integration whereas the 50/50 flux solutions were obtained using long-running Monte

Carlo calculations performed with the GMVP code (Ref. 2).

Previously, these benchmarks were analyzed with MCNP5 in Reference 3 using MCNP’s traditional

constructive solid geometry (CSG) system and multigroup (MG) cross sections. These results were then

integrated into the verification and validation (V&V) test suite for MCNP6 (Ref. 4). This paper revisits

and extends the previous analysis in several important ways. First, the input and MG cross section files are

updated to be consistent with (and take advantage of) the latest MCNP6 features. Most notably, previously

separated input files are combined making use of a recent increase in the number of point detectors allowed

per input file. In addition, semi-analytic continuous energy (CE) cross sections are generated to augment

the MG cross sections. Finally, and most substantially, unstructured mesh (UM) geometry is defined for

all three benchmark configurations using four supported element types within MCNP6: first- and second-

order (i.e., linear and quadratic) tetrahedrons and hexahedrons. When creating the UM, two different

meshing algorithms are used for generating UM consisting of first-order tetrahedrons. These various geometry

configurations are used to broaden the V&V suite of problems for MCNP6’s UM capabilities and, along the

way, improve the robustness of the UM tracking algorithms. Finally, variance reduction in the form of non-

uniform cell importances in the CSG cases is eliminated to provide a consistent basis for comparing speed of

execution between CSG and UM as well as to understand the rate of problem convergence without variance

reduction for each geometry type.

As such, this paper provides an updated self-consistent set of results for the six Kobayashi benchmark
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configurations (three geometries with MG and CE cross sections) using CSG and four different UM element

types with several meshing algorithms, where available. These results are compared with Reference 1 results

and some discussion is provided regarding the time of execution differences between MG and CE cross

sections as well as between CSG and UM.

II. Benchmark & UM Geometry Description

In Reference 1, each of the three benchmark configurations are defined using reflective boundaries along

the cardinal planes and thus represent one-eighth of a physical volume surrounded by a vacuum boundary.

However, MCNP6 is not capable of using reflective boundary conditions with point detectors. As such, all

MCNP6 geometry (CSG and UM) is defined for all eight octants and surrounded by a vacuum. The CSG

cases analyzed herein are generally consistent with Reference 3 and will not be described further except to

note any differences.

Two methods for generating the UM input file are recommended. At present MCNP6 only supports

UM specified using an Abaqus mesh input file format (Refs. 5, 6). As such, the analyst can use Abaqus

to create the mesh input file after creating (or importing) the geometry, assigning materials and element

sets, and creating the mesh. More details regarding working with MCNP6’s UM capabilities are given in

Reference 6 with a direct illustration using Abaqus given in Reference 7. Once the Abaqus mesh input file is

created, the um_pre_op utility provided with MCNP6 can be used to generate a skeleton MCNP6 input file.

Alternatively, one can use Attila4MC (Ref. 8) to prepare Abaqus-formatted UM and MCNP6 input files.

Note that Abaqus is capable of generating mesh using first- and second-order tetra-, penta-, and hexahedral

elements whereas Attila4MC is only capable of generating mesh using first-order tetrahedrons.

For all benchmark configurations, Abaqus is used to generate unstructured mesh using first- and second-

order tetra- and hexahedral elements to compare the effect of using different element types (which should

be negligible). When generating a mesh with Abaqus, a ‘seed’ is needed to roughly define edge length.

When tetra- and hexahedral mesh (both first- and second-order) are seeded, the same seed value is used so

the resulting mesh is on a consistent basis. Significant differences are not expected because all Kobayashi

geometries are strictly Cartesian and thus can be represented without approximation using these element

LA-UR-15-27089 3 of 37



types. Some minor differences may be observed because of roundoff issues. The following subsections

describe the UM generated with Abaqus for each problem in more detail. In addition, Attila4MC is used to

generate unstructured mesh using first-order tetrahedral elements at two levels of mesh refinement: coarse

and fine. These two levels of refinement are used to provide several additional tetrahedral mesh using

Attila4MC’s meshing algorithm rather than Abaqus’s to further examine UM neutron transport performance

and robustness and to provide several levels of mesh refinement to visually validate results. Note that in all

problems the UM geometry is defined consistent with the benchmark “reality,” with no arbitrary geometry

introduced for the purpose of applying cell-based variance reduction techniques, which is a departure from

the approach taken in the original CSG executions (Ref. 3).

II.A. Problem 1

Problem 1 of the Kobayashi benchmark is best described as a series of nested cubes with the central cube,

20 cm on a side, acting as an isotropic volume source composed of the same material as the shield (either

pure absorber or 50/50 absorber/scatterer). Surrounding the source is a cubic void with an outer side length

of 100 cm. Surrounding the void is a cubic shield with an outer side length of 200 cm. Dimensioned plan,

elevation, and 3-D perspective views of the geometry are available in Reference 1. A cutaway isometric

view of the tetrahedral and hexahedral UM generated with Abaqus is shown in Figure 1a. The UM shown

in Figure 1a feature first-order elements. Second-order elements are also analyzed herein, but they do not

differ visually from the first-order elements for the Kobayashi benchmarks because the geometry is strictly

Cartesian and are thus not shown. This is the same for Problems 2 and 3. In addition, the first-order

tetrahedral UM generated with Attila4MC is shown in Figure 1b for two arbitrary levels of mesh refinement:

coarse and fine. Total UM node and element counts for all UM models are given in Table I.

II.B. Problem 2

Problem 2 of the Kobayashi benchmark is best described as a central cube, 20 cm on a side, acting as

an isotropic volume source with a square channel (20 cm on a side) running directly outward from two

opposing faces. Surrounding the source and channel is a square shield with an outer side length of 120 cm.
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The assembly has an overall length of 200 cm. Dimensioned plan, elevation, and 3-D perspective views of

the geometry are available in Reference 1. A cutaway isometric view of the tetrahedral and hexahedral UM

generated with Abaqus is shown in Figure 2a and a cutaway isometric view of the coarsely- and finely-meshed

Attila4MC models is shown in Figure 2b. Total UM node and element counts for all UM models are given

in Table II.

II.C. Problem 3

Problem 3 of the Kobayashi benchmark is best described as a dogleg duct within an octant. However, when

reflected about the boundaries, this description somewhat loses its meaning. Regardless, this problem also

has a central cube, 20 cm on a side, acting as an isotropic volume source with a square channel (20 cm on a

side) running directly outward from from two opposing sides. This channel then splits into four 10 cm × 10 cm

channels which take several turns before terminating at the boundary. Surrounding the source and channels

is a square shield with an outer side length of 120 cm. The assembly has an overall length of 200 cm.

Plan, elevation, and 3-D perspective views of the geometry are available in Reference 1. A partial cutaway

isometric view of the tetrahedral and hexahedral UM generated with Abaqus is shown in Figure 3a and a

partial cutaway isometric view of the coarsely- and finely-meshed Attila4MC models is shown in Figure 3b.

In both cutaway views, the near source and shield regions are hidden to visualize the path of the dogleg

ducts in each of the four near octants. Total UM node and element counts for all UM models are given in

Table III.

III. Other Calculational Model Details

Like Reference 3, the material within the “void” is kept the same as the source and shield regions but set

to be a factor of 103 less dense. As noted in Reference 3, Reference 1 does not explicitly state how the void

was treated; however, it is reasonable to believe that it was indeed set as a pure void with no material or

density. For the purpose of this analysis, the void is assigned a material primarily to permit histories to

undergo collisions in the void and thus generate pseudoparticles which can then score on the point detectors.

Regardless, two materials are defined using this approach: a pure absorber and a 50/50 absorber/scatterer.
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The MG cross section data files are retrieved from Reference 3 and updated to effectively permit six-digit

ZAIDs and to reformat the date field to comply with the cross section parser in MCNP6 (e.g., 20030102

becomes 01/02/03). The MG cross section files are then used with the mgopt card and appropriate material

definition card.

In addition, CE cross section data files are generated using a new utility to create pseudo-analytic cross

sections for benchmarking purposes (Ref. 9). For this simple case, it is instructive to compare the performance

of the two different cross section types. In addition, had MG cross sections not already existed, the CE cross

section data can be generated with an arbitrary degree of complexity much more easily than MG data and

thus would have been the preferred energy treatment. Most importantly, CE calculations exercise different

parts of the code and thus provides increased code coverage testing relative to Reference 3 and also represents

the more-commonly used energy treatment in practice.

The UM calculations are run using only the default variance reduction techniques (i.e., weight cutoff and

implicit capture for the random transport and the default point detector roulette game). The calculations

performed in Reference 3 used non-uniform cell importances as a form of variance reduction particularly

important for tallies distant from the source. However, in order to create a direct speed comparison between

the CSG and UM cases herein and to understand the unoptimized rate of convergence, this variance reduc-

tion technique is removed and therefore the only variance reduction used are the default techniques. Any

differences are deemed acceptable because the desire is to compare UM to both CSG and the benchmark in

an overall sense without respect to a particular configuration or specific detector. It should be noted that

agreement between these calculations and the benchmark values can be improved to the levels demonstrated

in Reference 3 by reintroducing variance reduction techniques such as non-uniform cell-based importances

or weight windows defined on a cell- or mesh-wise basis.

At the time it was created, Reference 3 could only analyze a maximum of 20 detectors in a given MCNP5

input file. The limit in the currently-released version of MCNP6 (i.e., version 6.1.1) is 100 detectors per

input file and the current limit is 1000 detectors, which will be made available in a future MCNP6 release.

This increase is a boon to creating consolidated models, but there is an adverse effect on the execution time

and users are cautioned to continue using point detectors judiciously. Note that for the purpose of this
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analysis, a limit of 100 detectors per calculation is more than adequate to populate a single octant at all of

the points of interest specified in Reference 1. However, significantly more detectors are required to populate

all octant symmetric locations to combine the results for direct comparison with Reference 1. The results

reported herein only discuss a single octant of detectors; however, calculations were performed with all eight

octants populated with detectors and the results behaved as expected.

IV. Calculation Results Discussion

Each of the 84 calculations (12 CSG and 72 UM) use a consistent “bleeding edge” (i.e., nightly-build) version

of MCNP6, version 6.1.2. Because the nuclear data is synthesized, it is not relevant to report details on it.

All calculations are performed on the Los Alamos National Laboratory Mapache supercomputer. Mapache

consists of 592 compute nodes hosting dual-socket quad-core Intel Nahalem processors (4,736 processing cores

total) interconnected with InfiniBand with calculations distributed through the Moab Workload Manager.

Each calculation uses between 64 and 512 processors in order to balance queue throughput and speed of

execution while keeping all calculations below an administratively-imposed wall clock time limit.

Results are post-processed with a collection of purpose-built Python-based scripts. Line plots are gener-

ated by plotting benchmark values and overlaying parsed mctal file results for the final tally value and the

associated relative uncertainty (to draw uncertainty bars corresponding to 1σ). Note that the line plots are

colored based on the ColorBrewer2 8-class Paired color set (Ref. 10) in the electronic version of this paper.

Additional effort is not made to differentiate the datasets (in the print or electronic versions of this paper)

on a given plot because of the generally high level of agreement for the purposes of our comparisons herein.

Nevertheless, results are grouped based on the geometry system used (i.e., CSG, Abaqus-generated UM, and

Attila4MC-generated UM) as well as by the source/shield material (i.e., pure absorber or 50/50). Results

are shown for both MG and CE cross sections and we see that the energy treatment has a minimal effect on

the results (agrees on average within 2%±4%).

Also, isometric material distributions and flux edit results are created by converting the eeout files from

each execution to an XML-formatted unstructured mesh VTK file (Ref. 11) which is then displayed through

VisIt (Ref. 12) using its batch processing capabilities. The qualitative flux edits are presented to (a) provide
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an overall view of the flux behavior to validate its appropriateness and (b) illustrate one of the benefits

of using UM: minimal-overhead geometry-specific mesh-based results visualization. Only linear hexahedral

mesh results are shown here for demonstration purposes, but all other UM results appear similarly. However,

it should be noted that the coarse mesh generated with Attila4MC prevents appropriate interpretation of

the results. As such, the user is cautioned to specify the UM resolution considering both appropriate

representation of the geometry as well as the intended use of the UM edits.

IV.A. Problem 1

Results are reported in Reference 1 along three traverses in Problem 1, grouped and identified as Cases 1A,

1B, and 1C. Case 1A traverses every 10 cm in y from 5 to 95 cm, inclusive, keeping x = z = 5 cm. Case 1B

traverses along the diagonal with x = y = z = 5, 15, 25, . . . 95 cm. Case 1C traverses every 10 cm in x from

5 to 95 cm, inclusive, with y = 55 cm and z = 5 cm.

Results for Cases 1A, 1B, and 1C are shown in Figures 4, 5, and 6, respectively. For Cases 1A and

1C, CSG, Abaqus-generated UM, and Attila4MC-generated UM results agree with the Reference 1 solutions

within 1σ for pure absorber cases. For Case 1B, the UM results for the detector closest to the origin does

not agree within 2σ but is still within 3.5% of the benchmark value. For all cases with the 50/50 material

(most prominently in Case 1B), we see disagreement increasing as the detectors get further from the source.

This is a result of choosing to perform the calculations with only default variance reduction treatments.

Nevertheless, we can conclude that there is adequate statistical agreement between the various geometry

systems used and that they all produce results consistent with the reference solutions.

Note that for Case 1B, because the problem geometry is a cube, the point detectors lie on the interface

between adjacent elements when tetrahedral elements are used. In the course of performing this work,

significant effort was spent on improving the robustness of the UM particle tracking algorithms to not only

correctly handle this case but point detectors in general. Because of the potential for incorrect behavior,

users should exercise caution when using point detectors with UM when the detectors can lie on internal

UM interfaces for versions of MCNP6 before 6.1.2.
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IV.B. Problem 2

Results are reported in Reference 1 along two traverses in Problem 2, grouped and identified as Cases 2A

and 2B. Case 2A traverses every 10 cm in y from 5 to 95 cm, inclusive, keeping x = z = 5 cm. Case 2B

traverses every 10 cm in x from 5 to 55 cm, inclusive, with y = 95 cm and z = 5 cm.

Results for Cases 2A and 2B are shown in Figures 7 and 8, respectively. For pure absorber cases, 39 of

46 detectors agree with the reference solutions within 1σ (those other seven agree within 1.1σ). For 50/50

cases, 45 out of 46 detectors agree within 2σ. Similar to Problem 1, disagreement is primarily observed far

from the source which can be improved with additional variance reduction. Again we can conclude that

there is adequate statistical agreement between the various geometry systems used and that they all produce

results consistent with the reference solutions.

IV.C. Problem 3

Results are reported in Reference 1 along three traverses in Problem 3, grouped and identified as Cases 3A,

3B, and 3C. Case 3A traverses every 10 cm in y from 5 to 95 cm, inclusive, keeping x = z = 5 cm. Case 3B

traverses every 10 cm in x from 5 to 55 cm, inclusive, with y = 55 cm and z = 5 cm. Case 3C traverses

every 10 cm in x from 5 to 55 cm, inclusive, with y = 95 cm and z = 5 cm.

Results for Cases 3A, 3B, and 3C are shown in Figures 9, 10, and 11, respectively. Generally speaking,

the poorest agreement between the calculations performed herein and the benchmark values is observed for

this geometry. This is reasonable because the dogleg ducts represent a classic variance reduction problem

that hasn’t been explicitly addressed in this analysis. This behavior is also observed in Reference 3 despite

applying variance reduction. Nevertheless, for Cases 3A and 3B agreement between the calculated values

and the benchmark solutions is within 2σ or 5%. For Case 3C, agreement between the calculated values

and the benchmark solutions is within 2σ or 10%. In all cases, the results follow the trends observed in the

benchmark solutions.
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IV.D. Execution Time Discussion

In order to calculate the execution time, each calculation prints a timestamp immediately before and after

the calculation is performed. A Python-based script then parses the timestamps and calculates the difference

to the nearest second. The script then parses the number of particles used (from MCNP6’s nps variable)

and the number of processors used (because some calculations are more time consuming than others and

thus require more processors to fit within the execution wall clock time limits imposed by the queue system)

to calculate an aggregate speed which corresponds to the number of histories run per second per processor.

Note that this approach also accounts for non-transport related activities such as problem setup and output

file generation unlike the MCNP6-generated “source particles per minute” output; however, both approaches

show similar trends. Regardless, this approach is expected to provide a reasonable “real-world” measure of

relative speed between the various input permutations analyzed. See Tables IV – IX.

Several observations can be made regarding the speed results. First, CSG is faster than UM in all cases.

This is a widely recognized fact for simple problems given the general disparity in the total number of sur-

faces. However, it is clear that the speed to create models correctly representing complex geometry and the

clarity that unstructured mesh-based results can be visualized with cannot be overlooked when considering

total analysis time. We also see approximately two orders of magnitude in execution speed difference when

comparing different geometry types for a particular material configuration. Generally, hexahedron-based

UM are faster than equivalently-seeded tetrahedron-based UM (though total element count strongly drives

performance so the number of elements used should be minimized). Furthermore, linear elements are gen-

erally faster than quadratic elements. This illustrates the importance of selecting the appropriate element

type and degree of mesh refinement to balance accuracy and speed. Finally, MG cross sections tend to be

slightly faster than CE (1% ± 2%). However, like CSG versus UM, the time to create the data files should

be taken into consideration as well as the ability to work with them during post-processing.
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V. Conclusions

For all geometries, cross section energy treatments, and materials the calculated results herein followed the

behavior of the Reference 1 solutions. At worst, the results agreed within 2σ or 10% but generally within

1σ or 5%. Based on scoping studies and prior analyses, this agreement is expected to improve significantly

when additional variance reduction techniques are applied. By forgoing variance reduction in the calculations

herein, we are able to develop a sense of the results that are obtained when running with only the default

treatments and increase confidence that MCNP6’s UM tracking and interaction with point detectors produces

correct results.

In addition, we can develop fair comparisons of speed between different geometries and cross section

energy treatments. We have observed that: CSG calculations complete ∼10 times faster than the comparable

fastest UM calculations, there are only minor speed differences (∼1%) between MG and CE nuclear data,

there are significant speed differences (factor ∼100) between different element types for otherwise equivalent

calculations.

As such, it is recommended that users run with the simplest element type that adequately represents the

problem geometry, which are ideally first-order hexahedral elements. There is not a significant difference

in speed when using MG or CE cross sections, so it is recommended to use the best suited cross-section

libraries. Finally, the user is cautioned to examine point detector locations relative to element boundaries

to ensure that the detectors are not coincident with the boundaries, particularly for MCNP6 versions before

6.1.2.

Future work includes performing equivalent analyses with first- and second-order pentahedral elements.

This is not done in the present work because these elements tend to be used much less frequently than tetra-

and hexahedral elements. Furthermore, because of the desire to compare timing and results on an entirely

consistent basis, significant variance reduction is not performed herein. It would be interesting to examine

the effect of a consistent variance reduction scheme for equivalent problems.
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Tables

I Problem 1 Unstructured Mesh Node & Element Counts

II Problem 2 Unstructured Mesh Node & Element Counts

III Problem 3 Unstructured Mesh Node & Element Counts

IV Problem 1 Multigroup Calculation Speed of Execution [Speed = Histories / (Second × Pro-

cessor), Higher is Better]

V Problem 1 Continuous Energy Calculation Speed of Execution [Speed = Histories / (Sec-

ond × Processor), Higher is Better]

VI Problem 2 Multigroup Calculation Speed of Execution [Speed = Histories / (Second × Pro-

cessor), Higher is Better]

VII Problem 2 Continuous Energy Calculation Speed of Execution [Speed = Histories / (Sec-

ond × Processor), Higher is Better]

VIII Problem 3 Multigroup Calculation Speed of Execution [Speed = Histories / (Second × Pro-

cessor), Higher is Better]

IX Problem 3 Continuous Energy Calculation Speed of Execution [Speed = Histories / (Sec-

ond × Processor), Higher is Better]
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Table I: Problem 1 Unstructured Mesh Node & Element Counts

Mesher Element Type Nodes Elements

Abaqus

First-Order Tetrahedrons 3422 17430
Second-Order Tetrahedrons 25137 17430
First-Order Hexahedrons 2197 1728
Second-Order Hexahedrons 8281 1728

Attila4MC First-Order Tetrahedrons (Coarse) 89 228
First-Order Tetrahedrons (Fine) 16442 60633

LA-UR-15-27089 16 of 37



Table II: Problem 2 Unstructured Mesh Node & Element Counts

Mesher Element Type Nodes Elements

Abaqus

First-Order Tetrahedrons 1412 6668
Second-Order Tetrahedrons 10003 6668
First-Order Hexahedrons 1053 768
Second-Order Hexahedrons 3897 768

Attila4MC First-Order Tetrahedrons (Coarse) 63 112
First-Order Tetrahedrons (Fine) 5020 22316
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Table III: Problem 3 Unstructured Mesh Node & Element Counts

Mesher Element Type Nodes Elements

Abaqus

First-Order Tetrahedrons 5809 30791
Second-Order Tetrahedrons 43656 30791
First-Order Hexahedrons 3549 2880
Second-Order Hexahedrons 13481 2880

Attila4MC First-Order Tetrahedrons (Coarse) 385 1050
First-Order Tetrahedrons (Fine) 7256 31973
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Table IV: Problem 1 Multigroup Calculation Speed of Execution [Speed = Histories / (Second × Processor),
Higher is Better]

Speed Geometry Material
2830 CSG 50/50
919 CSG Pure Abs.
455 Abaqus, Lin. Hex. 50/50
246 Abaqus, Lin. Tet. 50/50
211 Attila4MC, Coarse Pure Abs.
186 Abaqus, Lin. Hex. Pure Abs.
116 Attila4MC, Coarse 50/50
69 Attila4MC, Fine Pure Abs.
68 Abaqus, Lin. Tet. Pure Abs.
39 Abaqus, Quad. Hex. Pure Abs.
35 Attila4MC, Fine 50/50
20 Abaqus, Quad. Tet. Pure Abs.
16 Abaqus, Quad. Hex. 50/50
9 Abaqus, Quad. Tet. 50/50
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Table V: Problem 1 Continuous Energy Calculation Speed of Execution [Speed = Histories / (Second × Pro-
cessor), Higher is Better]

Speed Geometry Material
2741 CSG 50/50
1116 CSG Pure Abs.
450 Abaqus, Lin. Hex. 50/50
244 Abaqus, Lin. Tet. 50/50
217 Attila4MC, Coarse Pure Abs.
177 Abaqus, Lin. Hex. Pure Abs.
114 Attila4MC, Coarse 50/50
69 Attila4MC, Fine Pure Abs.
67 Abaqus, Lin. Tet. Pure Abs.
39 Abaqus, Quad. Hex. Pure Abs.
35 Attila4MC, Fine 50/50
20 Abaqus, Quad. Tet. Pure Abs.
16 Abaqus, Quad. Hex. 50/50
9 Abaqus, Quad. Tet. 50/50
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Table VI: Problem 2 Multigroup Calculation Speed of Execution [Speed = Histories / (Second × Processor),
Higher is Better]

Speed Geometry Material
5341 CSG 50/50
1420 CSG Pure Abs.
1152 Abaqus, Lin. Hex. 50/50
639 Abaqus, Lin. Tet. 50/50
411 Attila4MC, Coarse Pure Abs.
316 Attila4MC, Coarse 50/50
244 Abaqus, Lin. Hex. Pure Abs.
205 Abaqus, Lin. Tet. Pure Abs.
169 Attila4MC, Fine Pure Abs.
128 Attila4MC, Fine 50/50
93 Abaqus, Quad. Hex. Pure Abs.
55 Abaqus, Quad. Tet. Pure Abs.
47 Abaqus, Quad. Hex. 50/50
27 Abaqus, Quad. Tet. 50/50
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Table VII: Problem 2 Continuous Energy Calculation Speed of Execution [Speed = Histories / (Second × Pro-
cessor), Higher is Better]

Speed Geometry Material
4952 CSG 50/50
1953 CSG Pure Abs.
1124 Abaqus, Lin. Hex. 50/50
634 Abaqus, Lin. Tet. 50/50
411 Attila4MC, Coarse Pure Abs.
313 Attila4MC, Coarse 50/50
244 Abaqus, Lin. Hex. Pure Abs.
205 Abaqus, Lin. Tet. Pure Abs.
153 Attila4MC, Fine Pure Abs.
128 Attila4MC, Fine 50/50
93 Abaqus, Quad. Hex. Pure Abs.
55 Abaqus, Quad. Tet. Pure Abs.
47 Abaqus, Quad. Hex. 50/50
27 Abaqus, Quad. Tet. 50/50
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Table VIII: Problem 3 Multigroup Calculation Speed of Execution [Speed = Histories / (Second × Processor),
Higher is Better]

Speed Geometry Material
962 CSG 50/50
868 CSG Pure Abs.
567 Abaqus, Lin. Hex. 50/50
261 Abaqus, Lin. Tet. 50/50
205 Abaqus, Lin. Hex. Pure Abs.
190 Attila4MC, Coarse Pure Abs.
90 Attila4MC, Fine Pure Abs.
88 Attila4MC, Coarse 50/50
58 Attila4MC, Fine 50/50
55 Abaqus, Quad. Hex. Pure Abs.
54 Abaqus, Lin. Tet. Pure Abs.
25 Abaqus, Quad. Hex. 50/50
21 Abaqus, Quad. Tet. Pure Abs.
12 Abaqus, Quad. Tet. 50/50
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Table IX: Problem 3 Continuous Energy Calculation Speed of Execution [Speed = Histories / (Second × Pro-
cessor), Higher is Better]

Speed Geometry Material
1201 CSG Pure Abs.
945 CSG 50/50
558 Abaqus, Lin. Hex. 50/50
257 Abaqus, Lin. Tet. 50/50
195 Abaqus, Lin. Hex. Pure Abs.
190 Attila4MC, Coarse Pure Abs.
90 Attila4MC, Fine Pure Abs.
87 Attila4MC, Coarse 50/50
58 Attila4MC, Fine 50/50
55 Abaqus, Quad. Hex. Pure Abs.
54 Abaqus, Lin. Tet. Pure Abs.
25 Abaqus, Quad. Hex. 50/50
21 Abaqus, Quad. Tet. Pure Abs.
12 Abaqus, Quad. Tet. 50/50
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Figures

1 Problem 1 (Nested Cubes) with Nearest Octant Hidden; Source/Shield Material: Dark, Void

Material: Light

2 Problem 2 (Straight Void Duct) with Nearest Octant Hidden; Source/Shield Material: Dark,

Void Material: Light

3 Problem 3 (Dogleg Void Duct) with Nearest Half-space Source/Shield Hidden; Source/Shield

Material: Dark, Void Material: Light

4 Problem 1A Point Detector Flux Results (x = z = 5 cm, y Varying)

5 Problem 1B Point Detector Flux Results (x = y = z Varying)

6 Problem 1C Point Detector Flux Results (y = 55 cm, z = 5 cm, x Varying)

7 Problem 2A Point Detector Flux Results (x = z = 5 cm, y Varying)

8 Problem 2B Point Detector Flux Results (y = 95 cm, z = 5 cm, x Varying)

9 Problem 3A Point Detector Flux Results (x = z = 5 cm, y Varying)

10 Problem 3B Point Detector Flux Results (y = 55 cm, z = 5 cm, x Varying)

11 Problem 3C Point Detector Flux Results (x = z = 5 cm, y Varying)

12 Problems 1, 2, and 3 Linear Hexahedral Mesh-Wise Neutron Flux Edit for Pure Absorber

(Left) and 50/50 (Right) Materials — Flux Decreases from Yellow (Bright) to Blue (Dark)
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(a) Tetrahedral (Left) and Hexahedral (Right) Abaqus-generated
UM

(b) Coarse (Left) and Fine (Right) Attila4MC-generated UM

Figure 1: Problem 1 (Nested Cubes) with Nearest Octant Hidden; Source/Shield Material: Dark, Void
Material: Light
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(a) Tetrahedral (Left) and Hexahedral (Right) Abaqus-generated
UM

(b) Coarse (Left) and Fine (Right) Attila4MC-generated UM

Figure 2: Problem 2 (Straight Void Duct) with Nearest Octant Hidden; Source/Shield Material: Dark, Void
Material: Light
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(a) Tetrahedral (Left) and Hexahedral (Right) Abaqus-generated
UM

(b) Coarse (Left) and Fine (Right) Attila4MC-generated UM

Figure 3: Problem 3 (Dogleg Void Duct) with Nearest Half-space Source/Shield Hidden; Source/Shield
Material: Dark, Void Material: Light

LA-UR-15-27089 28 of 37



(a) CSG, Pure Absorber (b) CSG, 50/50

(c) Abaqus UM, Pure Absorber (d) Abaqus UM, 50/50

(e) Attila4MC UM, Pure Absorber (f) Attila4MC UM, 50/50

Figure 4: Problem 1A Point Detector Flux Results (x = z = 5 cm, y Varying)
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(a) CSG, Pure Absorber (b) CSG, 50/50

(c) Abaqus UM, Pure Absorber (d) Abaqus UM, 50/50

(e) Attila4MC UM, Pure Absorber (f) Attila4MC UM, 50/50

Figure 5: Problem 1B Point Detector Flux Results (x = y = z Varying)
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(a) CSG, Pure Absorber (b) CSG, 50/50

(c) Abaqus UM, Pure Absorber (d) Abaqus UM, 50/50

(e) Attila4MC UM, Pure Absorber (f) Attila4MC UM, 50/50

Figure 6: Problem 1C Point Detector Flux Results (y = 55 cm, z = 5 cm, x Varying)
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(a) CSG, Pure Absorber (b) CSG, 50/50

(c) Abaqus UM, Pure Absorber (d) Abaqus UM, 50/50

(e) Attila4MC UM, Pure Absorber (f) Attila4MC UM, 50/50

Figure 7: Problem 2A Point Detector Flux Results (x = z = 5 cm, y Varying)
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(a) CSG, Pure Absorber (b) CSG, 50/50

(c) Abaqus UM, Pure Absorber (d) Abaqus UM, 50/50

(e) Attila4MC UM, Pure Absorber (f) Attila4MC UM, 50/50

Figure 8: Problem 2B Point Detector Flux Results (y = 95 cm, z = 5 cm, x Varying)
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(a) CSG, Pure Absorber (b) CSG, 50/50

(c) Abaqus UM, Pure Absorber (d) Abaqus UM, 50/50

(e) Attila4MC UM, Pure Absorber (f) Attila4MC UM, 50/50

Figure 9: Problem 3A Point Detector Flux Results (x = z = 5 cm, y Varying)
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(a) CSG, Pure Absorber (b) CSG, 50/50

(c) Abaqus UM, Pure Absorber (d) Abaqus UM, 50/50

(e) Attila4MC UM, Pure Absorber (f) Attila4MC UM, 50/50

Figure 10: Problem 3B Point Detector Flux Results (y = 55 cm, z = 5 cm, x Varying)
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(a) CSG, Pure Absorber (b) CSG, 50/50

(c) Abaqus UM, Pure Absorber (d) Abaqus UM, 50/50

(e) Attila4MC UM, Pure Absorber (f) Attila4MC UM, 50/50

Figure 11: Problem 3C Point Detector Flux Results (x = z = 5 cm, y Varying)
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(a) Problem 1

(b) Problem 2

(c) Problem 3

Figure 12: Problems 1, 2, and 3 Linear Hexahedral Mesh-Wise Neutron Flux Edit for Pure Absorber (Left)
and 50/50 (Right) Materials — Flux Decreases from Yellow (Bright) to Blue (Dark)

LA-UR-15-27089 37 of 37


	Introduction
	Benchmark & UM Geometry Description
	Problem 1
	Problem 2
	Problem 3

	Other Calculational Model Details
	Calculation Results Discussion
	Problem 1
	Problem 2
	Problem 3
	Execution Time Discussion

	Conclusions
	References

